Abstract

BackgroundSmall liver and minute intestinal flukes are highly prevalent in Southeast Asia. Definitive diagnosis of parasite infection is usually achieved parasitologically by finding the fluke eggs in feces. However, their eggs are difficult to differentiate morphologically in fecal samples, even for experienced technicians. The present study developed a PCR assay coupled with DNA pyrosequencing for identification of the fish-borne trematodes (FBT), Opisthorchis viverrini, Clonorchis sinensis, Haplorchis taichui, H. pumilio and Stellantchasmus falcatus, and to evaluate potential detection in fecal specimens, and identification and differentiation of cercarial and metacercarial stages.MethodsPrimers targeting the partial 28S large subunit ribosomal RNA gene were designed and about 46–47 nucleotides were selected as the target region for species identification by a PCR assay coupled with a pyrosequencing technique.ResultsThe nucleotide variations at 24 positions, which is sufficient for the identification of the five species of FBT were selected. The method could identify O. viverrini and C. sinensis eggs in feces, cercarial and metacercarial stages of O. viverrini, and metacercarial stage of H. pumilio and H. taichui. The detection limit was as little as a single O. viverrini or C. sinensis egg artificially inoculated in 100 mg of non-infected fecal sample (equivalent to 10 eggs per gram), indicating highly sensitivity. The method was found to be superior to the traditional microscopy method and was more rapid than Sanger DNA sequencing.ConclusionsDNA pyrosequencing-based identification is a valuable tool for differentiating O. viverrini and other Opisthorchis-like eggs, and can be applied to epidemiological studies and for molecular taxonomic investigation of FBT in endemic areas.

Highlights

  • Small liver and minute intestinal flukes are highly prevalent in Southeast Asia

  • We report the molecular identification of life cycle stages, of O. viverrini and C. sinensis, H. taichui, H. pumilio and S. falcatus by using the Polymerase chain reaction (PCR) assay and a high-throughput sequence analysis, pyrosequencing technique of the amplicons based on hypervariable regions within 28S rRNA genes

  • Multiple alignment of 28S rRNA sequences and pyrosequencing assays Multiple alignment of the 28S rRNA genes from O. viverrini (GenBank:HM004188), C. sinensis (GenBank:JF823989), H. taichui (GenBank:HM004187), H. pumilio (GenBank: HM004191), and S. falcatus (GenBank:KF241630) available in GenBank showed that 47 nucleotides and 46 nucleotides after the 3′ end of sequencing primer as the target region was sufficient for identification of the five target fish-borne trematodes (FBT) by pyrosequencing technique (Figure 1 and Table 1)

Read more

Summary

Introduction

Definitive diagnosis of parasite infection is usually achieved parasitologically by finding the fluke eggs in feces. Their eggs are difficult to differentiate morphologically in fecal samples, even for experienced technicians. The present study developed a PCR assay coupled with DNA pyrosequencing for identification of the fish-borne trematodes (FBT), Opisthorchis viverrini, Clonorchis sinensis, Haplorchis taichui, H. pumilio and Stellantchasmus falcatus, and to evaluate potential detection in fecal specimens, and identification and differentiation of cercarial and metacercarial stages. Human fishborne trematode (FBT) infections caused by liver and intestinal trematodes are especially problematic in Asian countries including Vietnam, Lao PDR, Cambodia and Thailand, for example, Opisthorchis viverrini, Clonorchis sinensis, Haplorchis taichui, Haplorchis pumilio, Stellantchasmus falcatus [1]. Since endemic areas of C. sinensis and O. viverrini are closely next to each other [1,5] with the report of co-endemic areas in Thailand [7], and since the number of travelers visiting endemic areas of those parasites has been expanding, both flukes may overlap in Southeast Asia

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.