Abstract

Abstract The rutting of flexible pavements during their exploitation is considered to be one of the main problems in UK as well as worldwide. It is a serious mode of distress alongside fatigue in bituminous pavements that may lead to premature failure, as indicated by permanent deformation or rut depth along the wheel load path, and results in early and costly rehabilitation. This kind of pavement distress makes a negative impact to the serviceability characteristics of the flexible pavement, to the residual life of pavement structure and also to the safety and ride quality for traffic. Two design methods have been used to control rutting: one to limit the vertical compressive strain on the top of subgrade and the other to limit rutting to a tolerable amount usually around “12 mm”. Although experimental data and practical experience have been introduced into these design methods through empirical parameters, there is not a simple relationship between the elastic strain and the long-term plastic behaviour of pavement materials. This paper describes a method based on the kinematic shakedown theorem for constructing a mathematical model to predict the long-term behaviour of pavement structures under the action of repeated and cyclic loadings imposed by moving traffic. This method seeks the mechanism from within a class of mechanisms that minimises the shakedown limit load for pavement structures consisting of layers of Mohr-Coulomb materials. The model differs from extant models, in that the cyclic nature of the loading on a pavement is recognised from the outset, and the current method which is based upon foundation analysis, is replaced by a procedure employing shakedown theory that features the capabilities and applications of the developed technique for assessing rutting in flexible pavements. The basic concepts are outlined together with the most recent calculations of the critical design shakedown load. The influence of the design parameters such as, the strength, stiffness and depth of the granular base-course material as well as the consequences of traffic loading (number of equivalent standard axel loads – ESAL’s) are discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call