Abstract
Road pavements are spread over large areas and convey various possibilities for energy sources such as high thermal gradients due to their materials and colors, wind corridors, large flat areas for solar harvesting, and heavy loading from traffic. The latest advances in road energy generation have been discretely implemented and have mainly focused on photovoltaic surface applications; other studies have explored the use of piezoelectric transducers with high stresses for better energy-production performance but limited life span. This study explores the stresses on pavement surfaces from traffic loading shockwaves that yield to the natural frequency vibration a piezoelectric harvester using a cantilever array. The passing vehicles triggered 16 piezoelectric sensors divided into four embedded steel profiles. The peak electrical power obtained in the experiment was 55.6 µW with a single transducer using a tip mass of 16 g. The proposed harvester demonstrated potential for applications in micro-generation of energy with limited infrastructure modification and high endurance under traffic loading over time. Its generation capacity is around 50 mWh a month with 16 piezoelectric cantilevers installed (for a commercial traffic volume of 1500 vehicles a day), enough to power a 200 m flashing LED raised marker strip to guide drivers for lane alignment during night shifts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.