Abstract

Abstract This development is the result of a DeepStar program to build and test a new radial passive magnetic bearing system (PMB) for downhole tools. While slated for the Magnetic Drive System (MDS) ESP, an advanced high-speed ESP that uses magnetic fields to increase performance, reliability and retrievability, this technology is applicable to conventional ESPs. The PMB supports the motor rotor across large clearances with no physical contact via magnetic fields in the ESP. An MDS ESP preliminary design was developed, from which the size and integration requirements of the PMB were defined. These requirements guided the analysis, design and testing of the full-scale components. Empirical analysis tools were used for initial iterations in size and performance of the PMB, followed by detailed magnetic finite element analysis (FEA) using commercial validated tools for the final performance prediction. With analytical validation of performance, detail designs were developed and hardware fabricated. Hardware testing was done to validate performance predictions and alignment with system requirements. The feasibility, preliminary design and analysis of the PMB were conducted in Phase 1 of the DeepStar Program and has continued with the full-scale design, build and test results of Phase 2. PMB performance results include load capability and deflection during static load events, all in relation to validating performance for use in the MDS system. This test data is used to validate the analysis approach used as well as to finalize the integration size of the PMB to meet the performance requirements of the MDS system. With the PMB large (>14mm) clearance between rotor and stator magnets, testing also includes variations in axial and radial position of the rotor in relation to the stator to account for installation variations in the MDS as well as use of sealing materials on both the rotor and stator. Integration is planned for use of the PMB in the MDS, so integration testing is planned to validate performance for each of these areas. This technology offers a radial bearing that can greatly enhance ESP performance and reliability. The PMB is a contact-less bearing system that does not require lubrication, can operate with large clearances to allow free fluid flow, is easily fully sealed from the environment, has virtually no bearing rotating losses, and has no operating life limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.