Abstract

In this study, a one-degree-of-freedom myoelectric prosthesis system was proposed using a Parent Wireless Assistive Interface (PWAI) that allowed an external assistant (e. g., the parent of the user) to immediately adjust the parameters of the prosthetic hand controller. In the PWAI, the myoelectric potential of use of the upper limb was plotted on an external terminal in real time. Simultaneously, the assistant adjusted the parameters of the prosthetic hand control device and manually manipulated the prosthetic hand. With these functions, children that have difficulty verbally communicating could obtain properly adjusted prosthetic hands. In addition, non-experts could easily adjust and manually manipulate the prosthesis; therefore, training for the prosthetic hands could be performed at home. Two types of hand motion discrimination methods were constructed in this study of the myoelectric control system: (1) a threshold control based on the myoelectric potential amplitude information and (2) a pattern recognition of the frequency domain features. In an evaluation test of the prosthesis threshold control system, child subjects achieved discrimination rates as high as 89%, compared with 96% achieved by adult subjects. Furthermore, the high discrimination rate was maintained by sequentially updating the threshold value. In addition, a discrimination rate of 82% on average was obtained by recognizing three motions using the pattern recognition method.

Highlights

  • The myoelectric prosthetic hand is a robotic device controlled by the myoelectric potential of the user, and it functions as the hand of an upper-limb deficient person

  • For adult multi-Degrees Of Freedom (DOF) EMG prosthetic hands, a method of pattern recognition is more effective than obtaining a combination of threshold value identifications from multiple myoelectric sensors (Amsuess et al, 2014)

  • We propose an external assistance method suitable for multi-DOF control using the pattern recognition technique

Read more

Summary

Introduction

The myoelectric prosthetic hand is a robotic device controlled by the myoelectric potential of the user, and it functions as the hand of an upper-limb deficient person. A direct control includes threshold control and proportional control using the myoelectric potential of specific locations (e.g., the extensor muscle group of the forearm, or the flexor muscle group). This is a typical prosthetic control method (Otto Bock Healthcare Products GmbH, 2013a; Powell and Thakor, 2013). In direct and pattern recognition control methods, training by experts, such as occupational therapists, is important (Lake, 1997; Marcus et al, 2009; Powell and Thakor, 2013)

Methods
Findings
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.