Abstract

Piezoelectric materials can generate an electrical response under mechanical stress, functioning as sensors. Conversely, applying an electrical field to these materials enables precise motion control, making them effective as actuators. Using a proposed methodology, this work focuses on evaluating the effective properties of hybrid multi-oriented composite laminates consisting of structural and piezoelectric layers driven by monoclinic constitutive equations. Square unit cell model was used to calculate all coefficients of the material tensor. The finite element (FE) homogenization method and periodic boundary conditions implemented by node-to-node constraint equations are used to study a representative volume element (RVE) modeled as three-layer unit cell in the mesoscale. The pre-processing, FE analysis, and post-processing are conducted in the FE package ABAQUSⓇ through Python scripts. The computational approach yields results that align closely with the analytical effective coefficients derived from the Asymptotic Homogenization Method (AHM), demonstrating the robustness and accuracy of the proposed methodology.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.