Abstract

Microbial contamination in beach water poses a public health threat due to waterborne diseases. To reduce the risk of exposure to fecal contamination, informing beachgoers in advance about the microbial water quality is important. Currently, determining the level of fecal contamination takes 24 h. The objective of this study is to predict the current level of fecal contamination (enterococcus [ENT] and ) using readily available environmental variables. Artificial neural network (ANN) and support vector regression (SVR) models were constructed using data from the Haeundae and Gwangalli Beaches in Busan City. The input variables included the tidal level, air and water temperature, solar radiation, wind direction and velocity, precipitation, discharge from the wastewater treatment plant, and suspended solid concentration in beach water. The dependence of fecal contamination on the input variables was statistically evaluated; precipitation, discharge from the wastewater treatment plant, and wind direction at the two beaches were positively correlated to the changes in the two bacterial concentrations ( < 0.01), whereas solar radiation was negatively correlated ( < 0.01). The performance of the ANN model for predicting ENT and at Gwangalli Beach was significantly higher than that of the SVR model with the training dataset ( < 0.05). Based on the comparison of residual values between the predicted and observed fecal indicator bacteria concentrations in two models, the ANN demonstrated better performance than SVR. This study suggests an effective prediction method to determine whether a beach is safe for recreational use.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.