Abstract

Lentiviral vectors derived from human immunodeficiency virus type 1 (HIV-1) hold great promise for gene therapy. However, the possibility of generating replication-competent retrovirus (RCR) through genetic recombination raises concerns for safety. Here we describe a novel HIV-based packaging system (trans-lentiviral) that splits gag/gag-pol into two parts: One that expresses gag/gag-pro and another that expresses reverse transcriptase and integrase as fusion partners of viral protein R (Vpr). Using a sensitive assay developed to specifically detect recombinant lentiviral DNA mobilization, we demonstrated that the trans-lentiviral vector prevents the generation of recombinants that contain a functional gag-pol structure, while the lentiviral vector generates env-minus recombinant lentivirus that mobilizes recombinant genomes to other cells when pseudotyped with an exogenous envelope. Since an intact gag-pol structure is absolutely required for retroviral DNA mobilization and RCR, the trans-lentiviral vector design significantly reduces this risk. Moreover, it makes it possible to assess the risk of RCR and DNA mobilization using an in vitro assay that monitors trans-lentiviral vector stocks for the regeneration of the gag-pol structure. Therefore, the trans-lentiviral vector design will ensure the greatest predictable level of safety for the clinical application of retroviral vectors, including HIV-based vectors.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.