Abstract

A novel three-dimensional (3D) magnetic bacterial cellulose nanofiber/graphene oxide polymer aerogel (MBCNF/GOPA) composed of bacterial cellulose nanofibers (BCNFs), Fe3O4 nanoparticles, graphene oxide (GO) nano-sheets, and polyvinyl alcohol (PVA) was developed by combining a facile filler-loaded networks method with a vacuum freeze-drying process for the removal of malachite green (MG) dye from aqueous solution. The influence of various factors on adsorption, including initial dye concentration, adsorbent dosage, contact time, temperature, and pH of dye solution, was then investigated. The adsorbent preserved a high adsorption capacity over a wide range of pH conditions. Moreover, the adsorption isotherms data fitted well with the Langmuir isotherm model with a maximum adsorption capacity of 270.27 mg g−1. Adsorption kinetics followed the pseudo-second-order model, and the thermodynamic parameters showed that the adsorption of MG dye was feasible and endothermic in nature and occurred spontaneously. Therefore, owing to its demonstrated properties such as 3D interconnected porous structure, lightweight, large specific surface area, superparamagnetic behavior at room temperature, excellent adsorbent efficiency (93% removal) and also its simple and eco-friendly synthesis process, MBCNF/GOPA could be considered a promising candidate for removing cationic dye pollutants from aqueous solution, which can easily be collected from aqueous solution by a small magnet. MBCNF/GOPA also showed favorable reusability for MG removal in wastewater treatment, and its application in different water samples for the removal of MG dye molecules from “real” samples was successfully performed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call