Abstract
Gymnodinium catenatum is a dinoflagellate known to cause paralytic shellfish poisoning (PSP), commonly associated with human muscular paralysis, neurological symptoms, and, in extreme cases, death. In the present work, we developed a real-time PCR-based assay for the rapid detection of the toxic microalgal species, G. catenatum, in environmental bivalve mollusc samples as well as seawater samples. G. catenatum-specific primers and probe were designed on the ITS1-5.8S-ITS2 rDNA region. Hydrolysis probe qPCR assay was optimized. ITS1-5.8S-ITS2 rDNA region copy numbers per G. catenatum cell genome were estimated to be 122.73 ± 5.54 copies/cell, allowing cell quantification. The application of the optimized qPCR assay for G. catenatum detection and quantification in field samples has been conducted, revealing high sensitivity (detection of around 1.3105 cells/L of seawater samples. Thus, the designed hydrolysis probe qPCR assay could be considered an efficient tool for phytoplankton monitoring whilst ensuring accuracy and sensitivity and providing cost and time savings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Environmental science and pollution research international
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.