Abstract
Cross-linking mass spectrometry (XL-MS) has become an emerging technology for defining protein-protein interactions (PPIs) and elucidating architectures of large protein complexes. Up to now, the most widely used cross-linking reagents target lysines. Although such reagents have been successfully applied to map PPIs at the proteome-wide scale, comprehensive PPI profiling would require additional cross-linking chemistries. Cysteine is one of the most reactive amino acids and an attractive target for cross-linking owing to its unique role in protein structures. Although sulfhydryl-reactive cross-linkers are commercially available, their applications in XL-MS studies remain sparse, likely due to the difficulty in identifying cysteine cross-linked peptides. Previously, we developed a new class of sulfoxide-containing MS-cleavable cross-linkers to enable fast and accurate identification of cross-linked peptides using multistage tandem mass spectrometry (MS n). Here, we present the development of a new sulfoxide-containing MS-cleavable homobifunctional cysteine-reactive cross-linker, bismaleimide sulfoxide (BMSO). We demonstrate that BMSO-cross-linked peptides display the same characteristic fragmentation pattern during collision-induced dissociation (CID) as other sulfoxide-containing MS-cleavable cross-linked peptides, thus permitting their simplified analysis and unambiguous identification by MS n. Additionally, we show that BMSO can complement amine- and acidic-residue-reactive reagents for mapping protein-interaction regions. Collectively, this work not only enlarges the toolbox of MS-cleavable cross-linkers with diverse chemistries, but more importantly expands our capacity and capability of studying PPIs in general.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.