Abstract

The reverse genetics system is a useful tool to generate infectious virus. Feline calicivirus (FCV), a member of the genus Vesivirus in the family Caliciviridae, has a positive sense, single-stranded RNA genome. Two reverse genetics systems have been established for FCV; however, these methods need multi-steps to produce progeny infectious virus. In this study, a novel plasmid-based single step reverse genetics system for FCV has been developed. The plasmid carries FCV F4 strain genomic sequence with an introduced silent mutation. In addition, at the 5′- and 3′-end, a human elongation factor-1α promoter and a cis-acting hepatitis delta virus ribozyme following poly-A, were added, respectively. When the plasmid was transfected into Crandell-Rees feline kidney cells, progeny FCV was generated. The reverse genetics system-derived FCV (rFCV) showed similar growth kinetics and antigenic characteristics and had identical genomic terminals to those of the original FCV F4 strain. The presence of the introduced silent mutation in the rFCV genomic cDNA supported that the progeny virus was originated from the plasmid. This novel FCV reverse genetics system is simple and can be used to evaluate the functions of the viral genome, proteins, and phenotypic characterization of FCV strains in the future.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.