Abstract

A novel silica-based microwave receptor was developed via a fluidized bed chemical vapor deposition (FBCVD) technique. In this study, the silica sand particles were successfully coated in an induction heating-assisted reactor, with carbon produced from thermal degradation of methane (TDM) at various reaction temperatures and times. The effect of FBCVD reaction parameters, temperature and reaction time, on the amount of carbon deposition, and the composition, coherence and thickness of the carbon coating layer were investigated using thermogravimetric and morphological analysis, respectively. The microwave heating performance of such developed receptors was further investigated in an innovative single-mode microwave apparatus and was subsequently compared with the relevant performance of sand and graphite particle mixtures. The developed microwave receptor stipulates low level of carbon content and high layer uniformity, extreme microwave heating rate, high durability, and excellent potential for application in gas-solid fluidized bed reactors as heat generator and catalyst support/promoter simultaneously.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call