Abstract

BackgroundThe underlying mechanisms by which probiotic lactic acid bacteria (LAB) enhance the health of the consumer have not been fully elucidated. Verification of probiotic modes of action can be achieved by using single- or multiple-gene knockout analyses of bacterial mutants in in vitro or in vivo models. We developed a novel system based on an inducible toxin counter-selection system, allowing for rapid and efficient isolation of LAB integration or deletion mutants. The Lactococcus lactis nisin A inducible promoter was used for expression of the Escherichia coli mazF toxin gene as counter-selectable marker.ResultsThe flippase (FLP)/flippase recognition target (FRT) recombination system and an antisense RNA transcript were used to create markerless chromosomal gene integrations/deletions in LAB. Expression of NisR and NisK signalling proteins generated stable DNA integrations and deletions. Large sequences could be inserted or deleted in a series of steps, as demonstrated by insertion of the firefly bioluminescence gene and erythromycin resistance marker into the bacteriocin operons or adhesion genes of Lactobacillus plantarum 423 and Enterococcus mundtii ST4SA.ConclusionsThe system was useful in the construction of L. plantarum 423 and E. mundtii ST4SA bacteriocin and adhesion gene mutants. This provides the unique opportunity to study the role of specific probiotic LAB genes in complex environments using reverse genetics analysis. Although this work focuses on two probiotic LAB strains, L. plantarum 423 and E. mundtii ST4SA, the system developed could be adapted to most, if not all, LAB species.

Highlights

  • The underlying mechanisms by which probiotic lactic acid bacteria (LAB) enhance the health of the consumer have not been fully elucidated

  • Construction and optimization of the nisin‐inducible counter‐selection marker system The heterologous use of nisin inducible promoter (PnisA) originating from the Lc. lactis nisin A lantibiotic producer strain was optimized for the probiotics L. plantarum 423 and E. mundtii ST4SA

  • We found that the PnisA promoter responded to much higher sub-inhibitory concentrations of nisin, ranging from 300 to 400 ng/ml in E. mundtii ST4SA pNZmazFnisRK (Fig. 2a) and 300 to 600 ng/ml nisin in L. plantarum 423 pNZmazFnisRK after 7 h of induction

Read more

Summary

Introduction

The underlying mechanisms by which probiotic lactic acid bacteria (LAB) enhance the health of the consumer have not been fully elucidated. We developed a novel system based on an inducible toxin counter-selection system, allowing for rapid and efficient isolation of LAB integration or deletion mutants. Strains of lactic acid bacteria (LAB) and bifidobacteria are the most frequently used as probiotics, and form part of many functional food and dietary supplements [2,3,4]. The construction of tailor-made LAB strains for functional genetic analyses is dependent on efficient genetic methods and is often reliant on chromosomal integrations or deletions of specific target genes. This calls for the development of techniques that will allow for the easy and efficient selection of chromosomally- or plasmid-located gene excisions/integrations

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.