Abstract

Surgical resection of malignant bone tumors leads to significant defects in the normal surrounding tissues that should be reconstructed to avoid amputation. Our research aimed to inactivate osteosarcoma (OS)-affected bone to obtain autologous bone grafts for bone defect reconstruction using a novel therapy called high hydrostatic pressurization (HHP) therapy. The key points are complete tumor death and preservation of the non-denatured native extracellular matrix (ECM) and bone tissue by HHP. Previously, we found that HHP at 200MPa for 10min can completely inactivate cells in normal skin and skin tumors, including malignant melanoma and squamous cell carcinoma while maintaining their original biochemical properties and biological components. Based on our previous research, this study used HHP at 200MPa for 10min to eradicate OS. We prepared an OS cell line (LM8), pressurized it at 200MPa for 10min, and confirmed its inactivation through morphological observation, WST-8 assay, and live/dead assay. We then injected OS cells with or without HHP into the bone marrow of the murine tibia, after which we implanted tumor tissues with or without HHP into the anterior surface of the tibia. After HHP, OS cells did not proliferate and were assessed using a live/dead assay. The pressurized cells and tumors did not grow after implantation. The pressurized bone was well prepared as tumor-free autologous bone tissues, resulting in the complete eradication of OS. This straightforward and short-pressing treatment was proven to process the tumor-affected bone to make a transplantable and tumor-free autologous bone substitute.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call