Abstract

Reference plasmids are an essential tool for the quantification of genetically modified (GM) events. Quantitative real-time PCR (qPCR) is the most commonly used method to characterize and quantify reference plasmids. However, the precision of this method is often limited by calibration curves, and qPCR data can be affected by matrix differences between the standards and samples. Here, we describe a digital PCR (dPCR) approach that can be used to accurately measure the novel reference plasmid pKefeng6 and quantify the unauthorized variety of GM rice Kefeng6, eliminating the issues associated with matrix effects in calibration curves. The pKefeng6 plasmid was used as a calibrant for the quantification of Kefeng6 rice by determining the copy numbers of event- (77 bp) and taxon-specific (68 bp) fragments, their ratios, and their concentrations. The plasmid was diluted to five different concentrations. The third sample (S3) was optimized for the quantification range of dPCR according to previous reports. The ratio between the two fragments was 1.005, which closely approximated the value certified by sequencing, and the concentration was found to be 792 copies/μL. This method was precise, with an RSD of ~3%. These findings demonstrate the advantages of using the dPCR method to characterize reference materials.

Highlights

  • Modified organisms (GMOs) are widely used and have been planted in over 28 countries

  • These concerns have resulted in Genetically modified organisms (GMOs)-labeling regulations in over 40 countries, and the sale of food and feed that contain unauthorized GMOs is prohibited in certain markets [2]

  • In October 2004, the European Commission recommended that the genetically modified (GM) content of food and feed can be expressed as the percentage of GM DNA copy numbers in relation to target taxon-specific DNA copy numbers calculated in terms of haploid genomes [4]

Read more

Summary

Introduction

Modified organisms (GMOs) are widely used and have been planted in over 28 countries. Due to the rapid increase in the number of biotech crops used for food production, consumers are becoming increasingly concerned about the health risks posed by GM crops and their derivatives. These concerns have resulted in GMO-labeling regulations in over 40 countries, and the sale of food and feed that contain unauthorized GMOs is prohibited in certain markets [2]. Ensuring that food and feed are correctly labeled to indicate whether ingredients are derived from GMOs is a considerable issue facing manufacturers, retailers, and enforcement agencies [3]. Reference materials are needed for the evaluation of copy number ratio between transgenic and taxon-specific genes

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.