Abstract

BackgroundAs the prevalence of hip osteoarthritis increases, the number of total hip arthroplasty (THA) procedures performed is also projected to increase. Accurately risk-stratifying patients who undergo THA would be of great utility, given the significant cost and morbidity associated with developing perioperative complications. We aim to develop a novel machine learning (ML)-based ensemble algorithm for the prediction of major complications after THA, as well as compare its performance against standard benchmark ML methods. MethodsThis is a retrospective cohort study of 89,986 adults who underwent primary THA at any California-licensed hospital between 2015 and 2017. The primary outcome was major complications (eg infection, venous thromboembolism, cardiac complication, pulmonary complication). We developed a model predicting complication risk using AutoPrognosis, an automated ML framework that configures the optimally performing ensemble of ML-based prognostic models. We compared our model with logistic regression and standard benchmark ML models, assessing discrimination and calibration. ResultsThere were 545 patients who had major complications (0.61%). Our novel algorithm was well-calibrated and improved risk prediction compared to logistic regression, as well as outperformed the other four standard benchmark ML algorithms. The variables most important for AutoPrognosis (eg malnutrition, dementia, cancer) differ from those that are most important for logistic regression (eg chronic atherosclerosis, renal failure, chronic obstructive pulmonary disease). ConclusionWe report a novel ensemble ML algorithm for the prediction of major complications after THA. It demonstrates superior risk prediction compared to logistic regression and other standard ML benchmark algorithms. By providing accurate prognostic information, this algorithm may facilitate more informed preoperative shared decision-making.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.