Abstract

Improved fruit quality and prolonged storage capability are key breeding traits for blueberry (Vaccinium spp.) fruit. Until now, breeding selection was mostly oriented on the amelioration of agronomic traits, such as flowering time, chilling requirement, or plant structure. Up until now, however, the storage effect on fruit quality has not been extensively studied, mostly because objective and handy phenotyping tools to evaluate quality traits were not available. In this study we are proposing a novel phenotyping protocol to support breeding selection and quality control within the entire blueberry production chain. Volatile organic compounds (VOCs) and texture traits, were measured by Proton Transfer Reaction- Time of Flight- Mass Spectrometry (PTR-ToF-MS) and a texture analyzer respectively, taking into consideration the influence of prolonged storage. The exploitation of the genetic variability existing within the investigated blueberry germplasm collection (including both southern and northern highbush, hybrids, and rabbiteyes) allowed the identification of the best performing cultivars, based on texture and VOCs variability, to be used as superior parental lines for future breeding programs. The comprehensive characterization of blueberry aroma allowed the identification of a wide array of spectrometric features, mostly related to aldehydes, alcohols, terpenoids, and esters, that can be used as putative biomarkers to rapidly evaluate the blueberry aroma variations related to genetic differences and storability. In addition, this study revealed a lack of straightforward relationship between harvest and postharvest quality features, that might be genotype-dependent.

Highlights

  • Worldwide blueberry (Vaccinium spp.) production, for both processed and fresh market, has increased over the last decade making blueberry becoming the second most important soft fruit species after strawberry (Romo-Muñoz et al, 2019)

  • MVA and MVB multiplexed reactions failed for two blueberry accessions [‘Azur’ (#4) and ‘Southern Belle’ (#43)] out of 46 samples and these accessions were not included in the genetic analysis

  • The genetic analysis of the plant materials showed that the individuals under investigation are unique genotypes and that the hexaploid Vaccinium accessions are genetically diverse and cluster distinctly compared to the tetraploid accessions

Read more

Summary

Introduction

Worldwide blueberry (Vaccinium spp.) production, for both processed and fresh market, has increased over the last decade making blueberry becoming the second most important soft fruit species after strawberry (Romo-Muñoz et al, 2019). Blueberry breeding programs were focused on developing cultivars to withstand conditions in the northern United States, including, among the major traits, disease resistance and broad ripening times (Hancock, 2009). Certain breeding programs became focused on the development of genotypes adapted to climatic conditions in the southern United States by hybridizing V. corymbosum with other species like V. darrowii and V. elliottii (Lyrene et al, 2003). Key breeding traits are a larger harvest window, improved fruit quality, and better storage capability (Gallardo et al, 2018)

Objectives
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call