Abstract
Acellular nerves are a reconstruction material and provide scaffolds for nerve regeneration. Numerous methods to develop acellular nerves have been described. However, these methods pose problems that can be attributed to incomplete acellular processing and destruction of the extracellular matrix (ECM); the former may lead to rejection response, while the latter may damage the scaffold. In order to overcome problems associated with the above-mentioned methods, we developed a novel method that employs a hypertonic sodium chloride solution to decellularize nerve graft material. Rat sciatic nerves were harvested, dipped in hypertonic sodium chloride solution (1 M), and shaken for 24 h. We then washed the nerves in phosphate-buffered saline for 7 days with shaking and evaluated the acellular nerves by hematoxylin-eosin (H-E) staining, immunostaining, and electron microscopy. We then transplanted the grafts to the sciatic nerve of another rat and evaluated the outcomes by H-E staining, immunostaining (anti-neurofilament antibody, anti-S-100 antibody), anterograde nerve tracing, and electron microscopy. We found that our method successfully decellularized the grafts, but was mild enough to leave the ECM intact. Two months after transplantation, immunostaining and anterograde nerve tracing confirmed that Schwann cells infiltrated the grafts and induced neurofilament extension. Our methodology preserves the ECM, is simple to develop, and does not involve substances that harm biogenic tissue. Acellular nerve tissue processed in this way could become a substitute material for bridging nerve gaps. Our method could also aid in the development of other acellular tissues.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.