Abstract

The use of video-assisted thoracoscopic surgery (VATS) has substantially increased in recent years. These procedures involve the insertion of specialized devices into the thoracic cavity via access ports. However, conventional devices such as cotton-tipped applicators and graspers can limit the field of view and injure the fragile lung tissue. The aim of this study was to develop a novel lung-stabilizing device for VATS that provides a good surgical field of view without causing lung injury. We developed a novel suction-based lung-stabilizing device equipped with three hemispheric 20-mm-diameter silicon suction cups. The utility and safety of the novel device were evaluated using a resected pig lung and canine models. In order to assess potential organ damage arising from the use of the novel device, canine lung parenchyma and pleura were macroscopically and microscopically examined after the device had been continuously applied under negative pressure conditions of -400 or -540mmHg for 1h. To assess the utility of the novel device, we performed lobectomies in the resected pig lung and VATS in canine models. The device demonstrated sufficient power to stabilize the lungs and provided a clear field of view during surgery, which enabled us to perform VATS lobectomies more easily than conventional stabilizing forceps. Assessment of the dogs' lungs immediately after detaching the suction-based device revealed no complications such as hemorrhage, air leaks, and bullae formation. Pathological examination after 7days also showed no substantial damage, except for a small impression in the parenchyma and pleura of the surface layer where the device had contacted the lung tissue. Although further validation studies in clinical settings are required, our study indicates that the novel lung-stabilizing device has potentially useful applications in VATS procedures.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.