Abstract

We have developed a novel, radiofrequency thermal therapy device designed to improve local control of large solid tumours using heat in the range 55–90°C. The device is a solenoid or helical coil designed to be loosely wound inside a tumour and excited with radiofrequency energy. Typically, we associate a uniform axially directed magnetic field with a solenoid coil, which when time varying, results in an electric field inside the coil, which lies mainly in the circumferential direction. In addition to this magnetically induced electric field, there exists a less familiar axially directed electric field inside the coil. Previous investigators have demonstrated the presence of this secondary axial electric field both experimentally and theoretically. Our design exploits the size and uniformity of these electric fields, for heating and coagulating a large tissue volume with a single applicator. The loosely wound solenoid is constructed from Nitinol, an electrically conductive shape memory alloy that permits the minimally invasive percutaneous insertion of the coil through a single cannulating delivery needle. To demonstrate the potential of this device and to determine the optimal frequency of operation, phantom tissue models and finite-element calculation models using COMSOL 3.2® were used to characterize frequency- and geometry-dependent trends in absorption rate density (ARD), which is proportional to electric field intensity. Radial and axial ARD profiles were measured, calculated and evaluated to determine the frequency and geometry best suited for producing large, homogenous coagulation volumes. Based on the trade-off between radial and axial uniformities of the ARD profiles, a 2 cm diameter coil with a 4 cm length and 1 cm pitch, operated at 27.12 MHz, produced the optimal heating pattern, as determined using tissue-mimicking phantom models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call