Abstract

The aim of this paper is to design, fabricate and control a novel Linear Magnetic Actuator (LMA) for applications such as active magnetic bearing systems to deal with vibration problems in rotating machines. This LMA actuator contains a moving body named ‘mover’ and three driving parts to drive the mover. Firstly, experiments have been conducted on the LMA to derive its mathematical model in order to investigate the generated electro-magnetic force as well as further research. The modeling result in a comparison with the actual system performance show that the electro-magnetic force varied symmetrically with the mover motion defined by the applied current. Secondly, an advanced trajectory controller named online tuning fuzzy PID controller has been designed for the LMA to improve the working performance. Finally, real-time experiments have been carried out to evaluate the tracking performance of the designed LMA control system. The results prove that the LMA driven by the proposed controller could track the desired trajectories with high accuracy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call