Abstract

Abstract Iron sulfide scaling can pose a significant threat to flow assurance, especially in sour production systems that yields hydrogen sulfide (H2S). When compared to conventional carbonate and sulfate scales, iron sulfide is difficult to inhibit and various risks (liberation of H2S) are associated with chemical removal. Moreover, efficacy of chemical treatment is poor and often uneconomical; and there is currently no true nucleation inhibitor of iron sulfide identified. A strictly anoxic static bottle test setup was developed and various traditional scale inhibitors, such as phosphonates, carboxylic acid polymers, as well as new chemistries were screened for iron sulfide nucleation and growth inhibition. Different concentrations of scaling ions (Fe+2 and S2-) were used to mimic the field to field variation in brine composition. The resulting aqueous phases as well as iron sulfide solid products were characterized using various analytical tools including ICP-OES, particle size analyser and Turbiscan. As expected, conventional scale inhibitors did not show any inhibitory or dispersive effect towards Iron sulfide under tested laboratory conditions. However, a chemistry is identified which can prevent iron sulfide scale deposition at threshold quantities. Specifically, this novel chemistry showed partial iron sulfide nucleation inhibition at early stages and growth inhibition (as high as two orders of magnitude) later. This significant growth inhibition of iron sulfide resulted in excellent dispersion formation that prevents iron sulfide particle aggregation/deposition. Various studies were conducted to understand the chemical-iron sulfide particles interaction and mechanistic aspect of chemical-iron sulfide interaction is identified and discussed. Currently inhibitor packages are being developed for field trials and results will be the subject of future publications. Efficient mitigation of iron sulfide scaling problem has huge industrial and economic importance in oil and gas production. Based on our current laboratory results, it is anticipated that this chemistry will provide a novel chemical treatment option for iron sulfide scaling control at threshold level whereas orders of magnitude more of conventional scale inhibitors may be required. In addition, this novel chemistry also showed promising outcomes on oil-water partitioning test by making finely dispersed iron sulfide particles water-wet thereby preventing the formation of iron sulfide-crude oil emulsion/pad.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call