Abstract

Summary Foams can be used as well-killing fluid for workover operation in low-pressure oil and/or gas wells. However, foams usually come from gas injection under high pressure or high-speed stirring, which is complicated, expensive, and hazardous. In addition, the foam's stability is still limited by the current method of adding viscous polymer or the single crosslinking between the polymer and single crosslinking agent. This paper explores a simple and safe in-situ generating procedure under surface conditions by virtue of the coefficient function of the CO2-gas-producing chemicals (GPCs) and the foaming agent. The foam stability is enhanced through the double crosslinking with the application of chromium acetate III (Cr3+) and polyethyleneimine (PEI), which guarantees its stability in the wellbore. This systematic study consists of optimization of different foaming agents, gel bases, and the effect of the GPC compositions (carbonate and acid) and their quantity, a macroscopic comparison of the stability and rheological properties of the double crosslinking and the common single crosslinking systems, with further investigation of their stability differences through microscopic research, and a coreflooding experiment to evaluate working performance. Within 4 days, the density of this novel foamed gel varies from 0.711 to 0.910 g/cm3 at 35°C, satisfying the present operation requirements for density and stability. This is because of the function of the GPCs and foaming agent, which means that finer foams can be obtained to achieve target low density. Meanwhile, on the basis of the double crosslinking, a more compact gel structure is formed; thus the stability can be effectively improved. Results also demonstrated that this foamed gel shows a favorable performance of low fluid loss and temporary plugging, and the gas-permeability-recovery rate is up to 93.90%, which proves the gel to be effective for formation-damage control. This study suggests that the novel in-situ-generated foamed gel has the potential to achieve favorable well-workover performance in low-pressure and low-temperature reservoirs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call