Abstract
In many dynamic systems, such as vehicles, engine air and fuel control systems, fluid power systems, industrial robotics, and testing machines, high-speed actuators are necessary to achieve efficient system operation and high bandwidth performance. This article introduces a new actuation mechanism to enable high-speed actuation. The premise for this actuation mechanism is to momentarily couple a moving component (kinetic energy source) with translational components, which is enabled by a coupling/clutch system. The kinetic energy source (flywheel, electric motor, pump or motor shaft, etc.) is intermittently clutched and declutched to produce linear motion. This article presents such an energy coupler actuator using a magneto-rheological fluid clutch, initially focused on an application for high-speed valve actuation. A multi-physics coupled model was developed to evaluate the proposed energy coupler actuator performance. Simulations were conducted to optimize the energy coupler actuator design parameters. A prototype of the magneto-rheological fluid energy coupler actuator based on the optimal design solution was fabricated and experimentally tested, which achieved 1.6-mm stroke in 4.7 ms.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Intelligent Material Systems and Structures
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.