Abstract

A long-standing issue for microfluidic impedance cytometry devices is the accuracy in determining the size of cells during counting and measurements. In this paper, we introduce a novel design that produces a homogeneous electric field in the sensing region and demonstrates higher accuracy than traditional designs in cell counting and sizing, reducing the reliance on cell focusing and signal postprocessing. The concept is validated, and the increased accuracy of the device over traditional designs is demonstrated through the use of finite element simulations to generate suitable data sets for particle trajectories and model expected signal variations.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.