Abstract
Food spoilage not only causes food waste, but also leads to serious foodborne illnesses. To address these concerns, a novel colorimetric sensor array (CSA) fabricated from oxidized chitin nanocrystals (O-ChNCs) combined with convolutional neural network (CNN) had been developed for real-time monitoring of beef freshness. The oxidation procedure downsized chitin to the nanoscale with enlarged surface areas and more sites that are reactive. It also converted hydroxyl groups to carboxyl groups, giving chitin nanocrystals high negative charges. These enhanced electrostatic interactions of O-ChNCs with ammonium cations, which was validated with three representative food spoilage gases (methylamine (MA), trimethylamine (TMA), and ammonia (NH3)). The detection limits reached 100, 70, and 70 ppm for MA, TMA, and NH3, respectively. All four CNN architectures succeeded with over 96 % accuracy in discriminating freshness when monitoring real beef samples stored at room temperature for 4 days in real time. The highest accuracy of 99.27 % was achieved by ResNet-50. The overall results indicated that the newly developed O-ChNCs-based CSA coupled with CNN achieved fast and reliable monitoring of beef freshness.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.