Abstract

Recently, we identified a novel therapeutic target and a small molecule for regulating angiogenesis. Our study showed that ubiquinol-cytochrome c reductase binding protein (UQCRB) of the mitochondrial complex III plays a crucial role in hypoxia-induced angiogenesis via mitochondrial reactive oxygen species (ROS) mediated signaling. Herein, we developed new synthetic small molecules that specifically bind to UQCRB and regulate its function. To improve the pharmacological properties of 6-((1-hydroxynaphthalen-4-ylamino)dioxysulfone)-2H-naphtho[1,8-bc]thiophen-2-one (HDNT), a small molecule that targets UQCRB, a series of HDNT derivatives were designed and synthesized. Several derivatives showed a significant increase in hypoxia inducible factor 1α (HIF-1α) inhibitory potency compared to HDNT. The compounds bound to UQCRB and suppressed mitochondrial ROS-mediated hypoxic signaling, resulting in potent inhibition of angiogenesis without inducing cytotoxicity. Notably, one of these new derivatives significantly suppressed tumor growth in a mouse xenograft model. Therefore, these mitochondrial UQCRB modulators could be potential leads for the development of novel antiangiogenic agents.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.