Abstract
IntroductionGenetically modified (GM) crops have been widely cultivated across the world and the development of rapid, ultrasensitive, visual multiplex detection platforms that are suitable for field deployment is critical for GM organism regulation. ObjectiveIn this study, we developed a novel one-pot system, termed MR-DCA (Multiplex RPA and Dual CRISPR assay), for the simultaneous detection of CaMV35S and NOS genetic targets in GM crops. This innovative approach combined Multiplex RPA (recombinase polymerase amplification) with the Dual CRISPR (clustered regularly interspaced short palindromic repeat) assay technique, to provide a streamlined and efficient method for GM crop detection. MethodsThe RPA reaction used for amplification CaMV35S and NOS targets was contained in the tube base, while the dual CRISPR enzymes were placed in the tube cap. Following centrifugation, the dual CRISPR (Cas13a/Cas12a) detection system was initiated. Fluorescence visualization was used to measure CaMV35S through the FAM channel and NOS through the HEX channel. When using lateral flow strips, CaMV35S was detected using rabbit anti-digoxin (blue line), whilst NOS was identified using anti-mouse FITC (red line). Line intensity was quantified using Image J and depicted graphically. ResultsDetection of the targets was completed in 35 min, with a limit of detection as low as 20 copies. In addition, two analysis systems were developed and they performed well in the MR-DCA assay. In an analysis of 24 blind samples from GM crops with a wide genomic range, MR-DCA gave consistent results with the quantitative PCR method, which indicated high accuracy, applicability and semi-quantitative ability. ConclusionThe development of MR-DCA represents a significant advancement in the field of GM detection, offering a rapid, sensitive and portable method for multiple target detection that can be used in resource-limited environments.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.