Abstract
A new carbon-based RGO/PVDF/MnO2 conductive membrane was developed to treat high load wastewater and recovery energy through bio-electrochemical system (BES), combining Membrane bioreactor (MBR) and Microbial fuel cell (MFC). The conductive membrane dual functions as the cathode of MFC and the filtration medium of MBR simultaneously. The structures of the conductive membrane were investigated by SEM, EDX and XPS, the existence of manganese dioxide catalyst, the high porosity and smooth surface morphology were confirmed. During operation, the membrane always maintained distinct ORR and electrochemical activity, exhibited excellent anti-fouling and flux recovery property, also better COD removal property than the control membrane without MnO2. Replacing proton exchange membrane (PEM) using Quartz sand chamber (QSC), the BES power density was 228mW/m3 higher than using PEM. The internal resistance, calculated in accordance with the power density curve using QSC was lower than that of the control group (respectively 752Ω and 937Ω). The results confirmed that it was feasible to replace the expensive PEM with cheap materials. The novel carbon-based conductive membrane with in-situ formed MnO2 catalyst and constructed BES with QSC were promising and beneficial for the future scale-up of BES.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.