Abstract

This paper presents a novel design method of the anisotropic structure to attain infinite dynamic stiffness to avoid chatter vibration in boring operations. Because a long and slender tool is used for boring operations, the stiffness of the tool holder is likely to decrease, resulting in low chatter stability. Although it is difficult to improve the stiffness of the boring holder itself, the nominal dynamic stiffness for the cutting process can be improved by designing an appropriate anisotropy in the dynamic stiffness of the boring tool. In this study, we formulate a theoretical relationship between the mechanical structural dynamics and chatter stability in boring operation and present the basic concept of tool design with anisotropic structure. In the actual tool design, ideal anisotropy may not be realized because of the influence of design error. Therefore, an analytical study was conducted to clarify the influence of the design error on the vibration suppression effect. Analytical investigations verified that the similarity of the frequency response functions in the modal coordinate system and the design of the compliance ratio according to the machining conditions are important. Furthermore, we designed a boring tool with an anisotropic structure which can achieve the proposed anisotropic dynamics. The frequency response function was evaluated utilizing FEM analysis. The estimated anisotropic dynamics of the proposed structure could significantly improve the nominal dynamics for boring operations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.