Abstract

Acoustic lens based focusing technology where the image reconstruction is achieved through the focusing of an acoustic lens, can potentially replace time consuming and expensive electronic focusing technology for producing high resolution real time ultrasound (US) images. A novel acoustic lens focusing based pulse echo US imaging system is explored here. In the system, a Polyvinylidene fluoride (PVDF) film transducer generates plane wave which is backscattered by the object and focused by a spherical acoustic lens on to a linear array of transducers. To improve the anticipated low signal to noise ratio (SNR) of the received US signal due to the low electromechanical coupling coefficient of the PVDF film, here we explored the possibility of implementing pulse compression technique using linear frequency modulated (FM) signals or chirp signals. Comparisons among the different SNR values obtained with short pulse and after pulse compression with chirp signal show a clear improvement of the SNR for the compressed pulse. The preliminary results show that the SNR achieved for the compressed pulse depends on time bandwidth product of the input chirp and the spectrum of the US transducers. The axial resolution obtained with compressed pulse improved with increasing sweep bandwidth of input chirp signals, whereas the lateral resolution remained almost constant. This work demonstrates the feasibility of using a PVDF film transducer as an US transmitter in an acoustic lens focusing based imaging system and implementing pulse compression technique into the same setup to improve SNR of the received US signal.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call