Abstract
In this paper, a novel 6-degrees-of-freedom (DOF) hybrid mechanism is proposed to realize position and posture adjusting for large-volume equipment. The designed hybrid manipulator is composed of the lower and upper modules, namely, a 3-DOF redundant spatial parallel mechanism (SPM) and a 3-DOF planar parallel mechanism (PPM), which has three rotational and three translational DOFs. According to the step-by-step pose adjusting strategy, the kinematics analyses of the lower and upper modules have been carried out systematically. For the whole hybrid mechanism, a complete kinematic model has been established; and visualized workspace of the kinematic model with regular shape and large volume demonstrates profound application prospects in engineering. In order to evaluate the performance of the proposed mechanism, experimental tests have been conducted in an automated docking system for pose adjustment of large and heavy components. The analysis results demonstrate the effectiveness and practicability of the new mechanism.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.