Abstract

Methods were developed for determination of human mononuclear leukocyte HMG-CoA reductase protein concentration by a noncompetitive, solid phase, bridged biotin-avidin enzyme immunoassay procedure. Leukocyte microsomal HMG-CoA reductase, first immobilized onto a nitrocellulose filter, is sequentially reacted with 1) monospecific, polyclonal rabbit anti-rat liver HMG-CoA reductase antiserum, which crossreacts with the human liver and leukocyte enzymes; 2) biotinylated donkey anti-rabbit immunoglobulin; 3) a streptavidin-horseradish peroxidase conjugate; and 4) 4-chloro-1-naphthol and H2O2 to visualize the quantity of horseradish peroxidase bound to the immunocomplex. Color development was proportional to the quantity of either purified liver or leukocyte microsomal HMG-CoA reductase applied to the nitrocellulose. Color development was not observed, however, when HMG-CoA reductase was omitted from the nitrocellulose, when one of the reactant species was omitted from the incubation reactions, or when anti-rat liver HMG-CoA reductase antiserum was pre-absorbed with either rat liver or human leukocyte HMG-CoA reductase. Immunoreactivity of microsomal HMG-CoA reductase was independent of the phosphorylation state of the enzyme, but was inversely related to the concentration of thiol-reducing agents present in the microsomal preparation up to 4 mM. Further increases in thiol-reductant failed to produce changes in immunoreactivity. Freshly isolated mononuclear leukocyte microsomal HMG-CoA reductase protein concentration in leukocytes from 31 healthy, normocholesterolemic subjects was a linear function of HMG-CoA reductase activity (R = 0.65; P less than 0.001). The catalytic efficiency of the freshly isolated mononuclear leukocyte enzyme was 313 +/- 34 pmol of mevalonate formed per min of incubation at 37 degrees C per mg immunoreactive protein. This methodology, in conjunction with that recently developed to measure human leukocyte HMG-CoA reductase activity (1984. J. Lipid Res. 25: 967-978), should prove useful in discriminating between HMG-CoA reductase regulatory mechanisms involving changes in enzyme protein concentration and those resulting from changes in enzyme catalytic efficiency.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.