Abstract

Gene therapy and DNA vaccination trials are limited by the lack of gene delivery vectors that combine efficiency and safety. Hence, the development of modular recombinant proteins able to mimic mechanisms used by viruses for intracellular trafficking and nuclear delivery is an important strategy. We designed a modular protein (named T-Rp3) composed of the recombinant human dynein light chain Rp3 fused to an N-terminal DNA-binding domain and a C-terminal membrane active peptide, TAT. The T-Rp3 protein was successfully expressed in Escherichia coli and interacted with the dynein intermediate chain in vitro. It was also proven to efficiently interact and condense plasmid DNA, forming a stable, small (∼100nm) and positively charged (+28.6mV) complex. Transfection of HeLa cells using T-Rp3 revealed that the vector is highly dependent on microtubule polarization, being 400 times more efficient than protamine, and only 13 times less efficient than Lipofectamine 2000™, but with a lower cytotoxicity. Confocal laser scanning microcopy studies revealed perinuclear accumulation of the vector, most likely as a result of transport via microtubules. This study contributes to the development of more efficient and less cytotoxic proteins for non-viral gene delivery.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.