Abstract

Under the global landscape of the prolonged COVID-19 pandemic, the number of individuals who need to be tested for COVID-19 through screening centers is increasing. However, the risk of viral infection during the screening process remains significant. To limit cross-infection in screening centers, a non-contact mobile screening center (NCMSC) that uses negative pressure booths to improve ventilation and enable safe, fast, and convenient COVID-19 testing is developed. This study investigates aerosol transmission and ventilation control for eliminating cross-infection and for rapid virus removal from the indoor space using numerical analysis and experimental measurements. Computational fluid dynamics (CFD) simulations were used to evaluate the ventilation rate, pressure differential between spaces, and virus particle removal efficiency in NCMSC. We also characterized the airflow dynamics of NCMSC that is currently being piloted using particle image velocimetry (PIV). Moreover, design optimization was performed based on the air change rates and the ratio of supply air (SA) to exhaust air (EA). Three ventilation strategies for preventing viral transmission were tested. Based on the results of this study, standards for the installation and operation of a screening center for infectious diseases are proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.