Abstract

Prostate cancer (PCa) is the most prevalent cancer among males. This study attempted to develop a clinically significant prostate cancer (csPCa) risk nomogram including Prostate Imaging-Reporting and Data System (PI-RADS) score and other clinical indexes for initial prostate biopsy in light of the different prostate regions, and internal validation was further conducted. A retrospective study was performed including 688 patients who underwent ultrasound-guided transperineal magnetic resonance imaging fusion prostate biopsy from December 2016 to July 2019. We constructed nomograms combining PI-RADS scoreand clinical variables (prostate-specific antigen [PSA], prostate volume (PV), age, free/total PSA,and PSA density) through univariate and multivariate logistic regression to identify patients eligible for biopsy. The performance of the predictive model was evaluated by bootstrap resampling. The area under the curve (AUC) of the receiver-operating characteristic (ROC) analysis was appointed to quantify the accuracy of the primary nomogram model for csPCa. Calibration curves were used to assess the agreement between the biopsy specimen and the predicted probability of the new nomogram. The χ2 test was also applied to evaluate the heterogeneity between fusion biopsy and systematic biopsy based on different PI-RADS scores and prostate regions. A total of 320 of 688 included patients were diagnosed withcsPCa. csPCa was defined as Gleason score ≥7. The ROC and concordance-index both presented good performance. The nomogram reached an AUC of 0.867 for predicting csPCa at the peripheral zone; meanwhile, AUC for transitionaland apex zones were 0.889 and 0.757, respectively. Statistical significance was detected between fusion biopsy and systematic biopsy for PI-RADS score >3 lesions and lesions at the peripheraland transitional zones. We produced a novel nomogram predicting csPCa in patients with suspected imaging according to different locations. Our results indicated that PI-RADS score combined with other clinical parametersshowed a robust predictive capacity for csPCa before prostate biopsy. The new nomogram, which incorporates prebiopsy data including PSA, PV, age, and PI-RADS score, can be helpful for clinical decision-making to avoid unnecessary biopsy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.