Abstract

Topological materials with robust topological surface states appear to be well-suited as electrochemical catalysts. However, few studies have been published on the development of non-noble metal topological catalysts, most likely because the topological properties tend to be attributed to the s and p orbital electrons, while transition-metal catalysis mainly involves d orbital electrons. Herein, we proposed a topological semimetallic (TSM) compound, VAl3, with a surface state consisting mainly of d orbital electrons, as an electrocatalyst for the hydrogen evolution reaction (HER). Density functional theory (DFT) calculations showed that the surface state electrons enhanced the adsorption of H atoms. Moreover, the transfer of surface state electrons between the surface and adsorbed H atoms was optimized through nickel doping. We experimentally prepared single-crystals VAl3 and V0.75Ni0.25Al3 alloys. Electrochemical analysis showed that not only did V0.75Ni0.25Al3 outperform VAl3 but also it was among the best non-noble metal topological HER electrocatalysts currently available.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.