Abstract

To evaluate the efficiency of a new technique for delivering aerosols to intubated infants that employs a new Y-connector, access port administration of a dry powder, and excipient enhanced growth (EEG) formulation particles that change size in the airways. A previously developed CFD model combined with algebraic correlations were used to predict delivery system and lung deposition of typical nebulized droplets (MMAD = 4.9μm) and EEG dry powder aerosols. The delivery system consisted of a Y-connector [commercial (CM); streamlined (SL); or streamlined with access port (SL-port)] attached to a 4-mm diameter endotracheal tube leading to the airways of a 6-month-old infant. Compared to the CM device and nebulized aerosol, the EEG approach with an initial 0.9μm aerosol combined with the SL and SL-port geometries reduced device depositional losses by factors of 3-fold and >10-fold, respectively. With EEG powder aerosols, the SL geometry provided the maximum tracheobronchial deposition fraction (55.7%), whereas the SL-port geometry provided the maximum alveolar (67.6%) and total lung (95.7%) deposition fractions, respectively. Provided the aerosol can be administered in the first portion of the inspiration cycle, the proposed new method can significantly improve the deposition of pharmaceutical aerosols in the lungs of intubated infants.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call