Abstract

This paper provides a new adaptive weather routing model, based on the Dijkstra shortest path algorithm, aiming to select the optimal route that maximizes the ship performances in a seaway. The model is based on a set of ship motion-limiting criteria and on the weather forecast maps, providing the sea state conditions the ship is expected to encounter along the scheduled route. The new adaptive weather routing model is applied to optimize the scheduled route in the Northern Atlantic Ocean of the S175 containership, assumed as a reference vessel, based on the weather forecast data provided by the Global WAve Model (GWAM). In the analysis, both wave and combined wind/swell wave conditions are embodied to investigate the incidence on the optimum route assessment. Furthermore, the effect of the vessel speed on the optimum route detection is also investigated. Current results clearly show that it is possible to achieve appreciable improvements, up to 50% of the ship seakeeping performances, without excessively increasing the route length and the voyage duration.

Highlights

  • Maritime trades are strictly dependent on the weather conditions the ship is expected to encounter along her route, provided that excessive ship motions may cause damage or cargo loss, as well as the decrease of the onboard comfort level, with a negative impact on the safety of navigation for both cargo and passenger ships

  • Even if the route selection is entrusted to the ship master, the adaptive weather routing algorithms can provide a significant support to the decision-making process, to ensure the proper balancing between the safety of navigation and the related economic impact, in terms of voyage duration and fuel savings

  • The Dijkstra shortest path algorithm was applied to detect the optimum route, constrained to maximize a non-negative cost function, namely the SPI index provided by Equation (1), in order to maximize the ship performances in a seaway

Read more

Summary

Introduction

Maritime trades are strictly dependent on the weather conditions the ship is expected to encounter along her route, provided that excessive ship motions may cause damage or cargo loss, as well as the decrease of the onboard comfort level, with a negative impact on the safety of navigation for both cargo and passenger ships. In this respect, even if the route selection is entrusted to the ship master, the adaptive weather routing algorithms can provide a significant support to the decision-making process, to ensure the proper balancing between the safety of navigation and the related economic impact, in terms of voyage duration and fuel savings. The main aim of the current research is to develop a new adaptive weather routing model aiming to: (i) maximize the seakeeping performances in a seaway, (ii) investigate the incidence of unimodal/bimodal spectra and vessel speed on the improvement of the seakeeping performances, and (iii) carry out a sensitivity analysis to investigate the effect of each seakeeping parameter on the optimum route selection

Objectives
Methods
Findings
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call