Abstract

In this study, a new 5-degree of freedom parallel-type robot for neurosurgery is developed and investigated for potential application in deep brain surgery (DBS). The neurosurgical robot consists of the base plate, the moving plate, and three limbs (a PPPU type central limb and two SPS type side limbs) connecting the plates. With an intension to use the developed neurosurgical micro robot with a macro scale robot, the position and kinematic analyses of the macro–micro robot are conducted. A structural analysis under the maximum payload condition is also conducted to confirm its structural rigidity. Then, a macro–micro robot simulator that employs the prototype as a micro robot module is developed to test both its motion capability and its potential application as a stereotactic DBS device. Finally, the absolute position accuracy measurement of the developed micro robot module based on its identified kinematic calibration model verified that its accuracy is comparable to those of existing micro robot module candidates.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.