Abstract
The lack of a sufficiently discriminatory molecular subtyping tool for Salmonella enterica serovar Enteritidis has hindered source attribution efforts and impeded regulatory actions required to disrupt its food-borne transmission. The underlying biological reason for the ineffectiveness of current molecular subtyping tools such as pulsed-field gel electrophoresis (PFGE) and phage typing appears to be related to the high degree of clonality of S. Enteritidis. By interrogating the organism's genome, we previously identified single nucleotide polymorphisms (SNP) distributed throughout the chromosome and have designed a highly discriminatory PCR-based SNP typing test based on 60 polymorphic loci. The application of the SNP-PCR method to DNA samples from S. Enteritidis strains (n = 55) obtained from a variety of sources has led to the differentiation and clustering of the S. Enteritidis isolates into 12 clades made up of 2 to 9 isolates per clade. Significantly, the SNP-PCR assay was able to further differentiate predominant PFGE types (e.g., XAI.0003) and phage types (e.g., phage type 8) into smaller subsets. The SNP-PCR subtyping test proved to be an accurate, precise, and quantitative tool for evaluating the relationships among the S. Enteritidis isolates tested in this study and should prove useful for clustering related S. Enteritidis isolates involved in outbreaks.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.