Abstract

Ground-based mid-infrared observations have two distinct advantages over space observations despite relatively lower sensitivity. One is the high spatial resolution and the other is the monitoring capability. These advantages can be emphasized particularly for the next coming ground-based infrared project University of Tokyo Atacama Observatory (TAO). Thanks to the low water vapor of the TAO site (5,640m) and the large aperture of the telescope (6.5meter), we can observe at 30 micron with a spatial resolution of 1 arcsec. It is about ten times higher than that of current space telescopes. The TAO is also useful for monitoring observations because of the ample observing time. To take these advantages we are now developing a new mid-infrared infrared instrument for the TAO 6.5-meter telescope. This covers a wide wavelength range from 2 to 38 micron with three detectors (Si:As, Si:Sb, and InSb). Diffraction limited spatial resolution can be achieved at wavelengths longer than 7 micron. Low-resolution spectroscopy can also be carried out with grisms. This instrument equips a newly invented "field stacker" for monitoring observations. It is an optical system that consists of two movable pick-up mirrors and a triangle shaped mirror, and combine two discrete fields of the telescope into camera's field of view. It will enable us to apply a differential photometry method and dramatically improve the accuracy and increase the feasibility of the monitoring observations at the mid-infrared wavelengths.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call