Abstract

In order to improve the tool life and micro-hole machining quality, the H-shaped chisel edge micro-drill (HCE-MD) was developed in this paper. The HCE-MD was characterized by the inner edge formed through the chisel edge thinning. In the micro-drilling process, the inner edge can perform positive rake cutting, so the machining area of the workpiece extruded by cutting edge with a negative rake angle is reduced. Based on this, the distribution of rake angle near the chisel edge corner is improved. Then, the HCE-MD was fabricated on the six-axis CNC grinding machine. The grinding process parameters of the micro-drill were optimized based on the orthogonal grinding test and grey relational grade theory. The size and shape accuracy of the micro-drill were controlled by the multi-axis linkage grinding method and the movement-axis micro compensation method. Finally, the 0.25 mm HCE-MD was fabricated with the cutting edge radius of 1.94 μm and the flank surface roughness of 0.25 μm. The drilling performance of HCE-MD was evaluated through comparative drilling experiments. The experimental results show that, compared with common micro drill, the HCE-MD produced lower thrust force and better micro-hole roundness accuracy, and reduced the micro-drill wear on the chisel edge and the flank.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call