Abstract

Chlorella ellipsoidea is a single-celled eukaryotic green microalgae with high nutritional value. Its value may be further increased if a simple, reliable and cost-effective transformation method for C. ellipsoidea can be developed. In this paper, we describe a novel transformation method for C. ellipsoidea . This system is based on treatment of C. ellipsoidea cells with cellulolytic enzymes to weaken their cell walls, making them become competent to take up foreign DNA. To demonstrate the usefulness and effectiveness of this method, we treated C. ellipsoidea cells with a cell wall-degrading enzyme, cellulase, followed by transformation with plasmid pSP-Ubi-GUS harbouring both the zeocin resistance gene and the beta-glucuronidase (GUS) reporter gene that serve as selective makers for transformation. Transformants were readily obtained on zeocin selection medium, reaching transformation efficiency of 2.25×10(3) transformants/μg of plasmid DNA. PCR analysis has also demonstrated the presence of the GUS reporter gene in the zeocin-resistant transformants. Histochemical assays further showed the expression of the GUS activity in both primary transformants and transformants after long-term growth (10months) with antibiotic selection on and off. Availability of a simple and efficient transformation system for C. ellipsoidea will accelerate the exploration of this microalga for a broader range of biotechnological applications, including its use as a biologic factory for the production of high-value human therapeutic proteins.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.