Abstract
AbstractThis paper proposes a new mechanistic-empirical rutting (MER) model to evaluate the permanent deformation (PD) behavior of unbound granular material (UGM). To characterize the stress dependence of rutting behavior in UGM, the MER model incorporated a softening stress term and a hardening stress term into the Tseng-Lytton model, which is based on the Drucker-Prager plastic yield criterion. Repeated load triaxial tests were performed on two types of UGMs in this study, employing seven stress states to calibrate the model coefficients, and two stress states to validate the accuracy of the model predictions. The correlations of the two incorporated stress terms with the accumulated permanent strains were established based on the triaxial test results. It was found that the correlations are fitted by power functions with 0.97–0.99 R2 values. The proposed MER model was compared with the existing UGM rutting models, including the MEPDG model, Korkiala-Tanttu model, and UIUC model in terms of differences ...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.