Abstract

Lacrimal surgery in cases of severely obstructed or missing canalicular ducts is highly challenging. In these cases, the placement of a bypass tube is currently the only option to restore the drainage of tears into the nose and reduce the symptomatic watery eye. Different approaches to achieve functional drainage have been tried using blood vessels or artificial implants. The implantation of the rigid Lester Jones tube is, since its introduction in the late 1960s, the gold standard. The functional success is satisfactory. However, complication rates are high and remain, even with many modifications of the original design, a major problem. These complications include mainly the displacement and blockage of the tube, requiring regular checkups, as well as irritation of the surrounding tissue including the nose and the eye. The objective of this study was to develop a new lacrimal duct conduit (LDC) to restore structural and functional integrity of the lacrimal drainage system. The conduit is constructed with a novel polymer, polyhedral oligomeric silsesquioxane-poly(carbonate-urea)urethane (POSS-PCU), that offers biocompatibility. We exploit nanotopography to evade the problems associated with current applications. A number of extrusion techniques were investigated for this purpose: ultrasonic atomization spraying, electrohydrodynamic atomization spraying/spinning, extrusion-coagulation, and high-pressure coagulation by autoclave and casting. Finally, the coagulation and cast technique were selected to construct an LDC superior to its predecessors, and its advantages highlighted.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.