Abstract

Prediction of tunnel boring machine (TBM) performance parameters can be caused to reduce the risks associated with tunneling projects. This study is aimed to introduce a new hybrid model namely Firefly algorithm (FA) combined by artificial neural network (ANN) for solving problems in the field of geotechnical engineering particularly for estimation of penetration rate (PR) of TBM. For this purpose, the results obtained from the field observations and laboratory tests were considered as model inputs to estimate PR of TBMs operated in a water transfer tunnel in Malaysia. Five rock mass and material properties (rock strength, tensile strength of rock, rock quality designation, rock mass rating and weathering zone) and two machine factors (trust force and revolution per minute) were used in the new model for predicting PA. FA algorithm was used to optimize weight and bias of ANN to obtain a higher level of accuracy. A series of hybrid FA-ANN models using the most influential parameters on FA were constructed to estimate PR. For comparison, a simple ANN model was built to predict PR of TBM. This ANN model was improved on the basis of new ways. By doing this, the best ANN model was chosen for comparison purposes. After implementing the best models for two methods, the data were divided into five separate categories. This will minimize the chance of randomness. Then the best models were applied for these new categories. The results demonstrated that new hybrid intelligent model is able to provide higher performance capacity for predicting. Based on the coefficient of determination 0.948 and 0.936 and 0.885 and 0.889 for training and testing datasets of FA-ANN and ANN models, respectively, it was found that the new hybrid model can be introduced as a superior model for solving geotechnical engineering problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.