Abstract

Abstract Recycled aggregate concrete (RAC) has been widely used in practical engineering construction. However, the ability of buildings to resist wind-induced vibration and earthquake effects plays an important role in building safety. It is urgent to ensure that recycled concrete still has good anti-vibration ability within the allowable strength range. By conducting damping tests on recycled concrete specimens, the results show that the damping performance of RAC is better improved compared with natural aggregate concrete. Moreover, the influence of internal factors of recycled aggregates and external environmental conditions on damping performance can be determined, and corresponding damping ratio prediction models can be constructed. However, the current prediction models still have limitations in theory and practice. The existing damping ratio prediction models have a large span of independent variables and do not consider the gradual carbonation effect in the actual environment over time. To overcome these limitations, a new damping ratio prediction model is proposed. Based on the replacement rate of recycled aggregates (RAs) and the amplitude of excitation force, the influence of modified admixtures and carbonation on damping performance is considered, and the corresponding model prediction formula is constructed. In addition, the influence mechanism is further demonstrated and explained from the macroscopic aspect of specimen profile and the microscopic aspect of electron microscopy tests. It is found that, considering both strength and cost factors, recycled concrete still has good damping performance when the replacement rate of recycled aggregates (RAs) is 40%.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call