Abstract

Some polyphenols have unpleasant taste properties such as astringency, which could interfere with consumers' choices. The knowledge on astringency mechanisms points that astringency is a complex phenomenon probably related to more than one physical-chemical mechanism. Thus, this work aims to develop a new and more realistic cell-based model containing human saliva, mucosa pellicle, and an oral cell line (HSC-3) to understand the oral molecular events that could contribute to the overall astringency perception. This model was then used to study the interactions with a food procyanidin fraction (PF) by HPLC. In general, the results revealed higher interaction (synergism) for the model with all the referred oral constituents (mucosa pellicle, salivary proteins, and HSC-3 cell line, HSCMuSp) when compared to the interaction with individual constituents, the PF + cells or PF + saliva. Regarding the procyanidins, a significant interaction was observed for the procyanidin monomer EcG, procyanidin dimers B7 and B2G, and trimer C1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.